
Learning to Walk across Time for Interpretable Temporal
Knowledge Graph Completion

Jaehun Jung
Seoul National University,

Kakao Enterprise
Seoul, Korea

sharkmir1@snu.ac.kr

Jinhong Jung
Jeonbuk National University

Jeonju, Korea
jinhongjung@jbnu.ac.kr

U Kang
Seoul National University

Seoul, Korea
ukang@snu.ac.kr

ABSTRACT

Static knowledge graphs (KGs), despite their wide usage in re-
lational reasoning and downstream tasks, fall short of realistic
modeling of knowledge and facts that are only temporarily valid.
Compared to static knowledge graphs, temporal knowledge graphs
(TKGs) inherently reflect the transient nature of real-world knowl-
edge. Naturally, automatic TKG completion has drawn much re-
search interests for a more realistic modeling of relational reason-
ing. However, most of the existing models for TKG completion
extend static KG embeddings that do not fully exploit TKG struc-
ture, thus lacking in 1) accounting for temporally relevant events
already residing in the local neighborhood of a query, and 2) path-
based inference that facilitates multi-hop reasoning and better in-
terpretability. In this paper, we propose T-GAP, a novel model for
TKG completion that maximally utilizes both temporal information
and graph structure in its encoder and decoder. T-GAP encodes
query-specific substructure of TKG by focusing on the temporal
displacement between each event and the query timestamp, and
performs path-based inference by propagating attention through
the graph. Our empirical experiments demonstrate that T-GAP
not only achieves superior performance against state-of-the-art
baselines, but also competently generalizes to queries with unseen
timestamps. Through extensive qualitative analyses, we also show
that T-GAP enjoys transparent interpretability, and follows human
intuition in its reasoning process.

CCS CONCEPTS

• Computing methodologies → Knowledge representation

and reasoning; Temporal reasoning; Neural networks.

KEYWORDS

Knowledge Graph Completion; Graph Neural Networks; Relational
Reasoning
ACM Reference Format:

Jaehun Jung, Jinhong Jung, and U Kang. 2021. Learning to Walk across Time
for Interpretable Temporal Knowledge Graph Completion. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467292

Figure 1: Example of temporal displacement. Edges in bold

are important events relevant to the input query.

(KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3447548.3467292

1 INTRODUCTION

Knowledge graph (KG), due to its expressiveness over structured
knowledge, has been widely used in various applications including
recommender system [21], information retrieval [15], concept dis-
covery [10], and question answering [26]. Moreover, the inherent
sparseness of KGs gives rise to research interests on automatic
knowledge graph completion which predicts missing entity for
incomplete queries in form of (subject, predicate, ?).

Recent advancements in KG completion tasks have extended to a
more challenging domain of temporal knowledge graphs (TKGs), as
theymodel realistic events that are only temporarily valid. Triples in
temporal graphs are annotated with the corresponding time token,
taking form of (subject, predicate, object, timestamp). Naturally,
TKG completion task can be formulated as predicting missing tail
entity for queries in the form of (subject, predicate, ?, timestamp).

Majority of existing approaches to TKG completion propose a
straightforward extension of conventional KG embeddings onto the
temporal graphs [4, 12]. There are twomajor rooms of improvement
from the existing models, each from the encoding phase, and the
decoding phase. In the encoding phase, a model could benefit from
the rich neighborhood information residing in the structure of
TKGs. Extracting, and encoding query-relevant information from

https://doi.org/10.1145/3447548.3467292
https://doi.org/10.1145/3447548.3467292

the neighborhood nodes and their associated edges would help in
fine-grained modeling of entity representation. The importance of
neighborhood encoding has already been appreciated in static KGs
[2, 17], but extension of these models to TKG is non-trivial, due to
the additional time dimension in each triple.

Next, in the decoding phase, relational reasoning on TKG could
leverage path-based inference. Several works adopted path-traversal
model in static KGs [3, 23], showing preferable performance in rela-
tional reasoning compared to embedding-based models. Although
path-based inference helps in capturing long-term dependency
between nodes and gives better interpretability over model’s rea-
soning process, these approaches are yet to be examined in TKG
completion tasks.

To this end, we propose T-GAP (Temporal GNN with Attention
Propagation), a novel model for TKG completion, that tackles both
challenges stated above. In the encoder, we introduce a new type
of temporal graph neural network (GNN), which attentively aggre-
gates query-relevant information from each entity’s local neighbor-
hood. Specifically, we focus on encoding the temporal displacement
between the timestamps of the input query and each edge being
encoded. An intuitive example is presented in Figure 1. Evidently,
the two most important facts to answer the given query (COVID-
19, infects, ?, 12/20), are that A has been infected to COVID-19 at
12/18, and A met B at 12/19. Here, one should note that the valuable
information lies in the fact that A got infected 2 days before the
time of interest, not that he was infected at a specific day of 12/18.
What matters most when accounting for temporal events, is the
relative displacement between the event and the time of interest,
rather than the absolute time of the event. To effectively capture
the temporal displacement, our proposed encoder separately en-
codes both the sign of the displacement (i.e. whether the time of
the event belongs to past, present, or future), and the magnitude
of the displacement (i.e. how far is the event from the time of our
interest).

Also, T-GAP performs a generalized path-based inference over
TKG, based on the notion of Attention Flow [24]. In each decoding
step, our model explores KG by propagating attention value at each
node to its reachable neighbor nodes, rather than sampling one
node to walk from the neighborhood. The soft approximation of
path traversal with attention propagation not only allows our model
to be easily trained with end-to-end supervised learning, but also
provides better interpretation over its reasoning process, compared
to embedding-based models. 1

In summary, our contributions are as follows:
• We propose a new GNN encoder that effectively captures
query-relevant information from temporal KGs.
• Based on the encoder, we present T-GAP, a novel path-based
TKG reasoning model. We examine T-GAP in 3 benchmark
datasets in TKG completion task, and the quantitative met-
rics show clear improvement in all benchmarks compared
to the state-of-the-art baselines.
• By analyzing the inferred attention distribution, we show
that T-GAP possesses clear interpretability over its reasoning
process.

The symbols used in the paper are provided in Table 1.

1Source code available at https://github.com/sharkmir1/T-GAP.

Table 1: Notations of symbols used in the paper.

Notation Description
𝐺𝐾𝐺 A graph ⊆ 𝑉𝐾𝐺 × 𝑅𝐾𝐺 ×𝑉𝐾𝐺 ×𝑇𝐾𝐺
𝑉𝐾𝐺 Set of nodes in𝐺𝐾𝐺
𝑅𝐾𝐺 Set of relations in𝐺𝐾𝐺
𝑇𝐾𝐺 Set of timestamps in𝐺𝐾𝐺
𝑣𝑖 The 𝑖-th node
𝑒𝑖 𝑗 The edge from 𝑣𝑖 to 𝑣𝑗
q Query context vector
h𝑖 Preliminary node feature of 𝑣𝑖 in𝐺𝐾𝐺
𝝆𝑖 𝑗 Edge feature of 𝑒𝑖 𝑗 in𝐺𝐾𝐺

𝐺
(𝑡)
𝑠𝑢𝑏

Query-dependent subgraph of 𝐺𝐾𝐺 at 𝑡-th decoding
step

g(𝑡)
𝑖

Query-dependent node feature of 𝑣𝑖 in𝐺
(𝑡)
𝑠𝑢𝑏

𝑎
(𝑡)
𝑖

Node attention value assigned to 𝑣𝑖 at the 𝑡 -th decoding
step

𝑎
(𝑡)
𝑖 𝑗

Edge attention value propagated through 𝑒𝑖 𝑗 at the 𝑡 -th
decoding step

W· Various weight matrices
| | Concatenation

2 RELATEDWORK

Various approaches have been made toward automatic comple-
tion of static KGs. Majority of conventional approaches propose
embedding-based models, including translative [1, 22], and factor-
ization basedmodels [19, 25]. To complement for the weak represen-
tation power of KG embeddings, several recent works incorporate
neural network either to the scoring function, or as an additional
encoding layer. ConvE [5] adopts convolutional layer to model
sophisticated interaction between entities in the scoring function.
KBGAT [17], and RGHAT [27] adopt a variant of graph attention
network to contextualize entity embedding with the corresponding
neighborhood structure. DPMPN [23] employs two GNNs to encode
both the original graph and an induced subgraph, for a scalable
learning of KG structure. We extend the neighborhood encoding
scheme of these prior works to temporal graphs, especially focusing
on query dependent encoding of KG structure.

Existing works on TKG completion primarily focus on extending
static KG embedding to dynamic graphs. Different models mainly
differ in how to represent independent timestamps, and incorporate
it to their scoring functions. HyTE [4] extends TransH [22], pro-
jecting entity and relation embedding to time-specific hyperplane.
García-Durán et al. (2018) propose to represent temporal relation as
a sequence of relation type and characters in the timestamp, and en-
code the sequence using RNN. TComplEx [12] considers the score
of each triple as canonical decomposition of order 4 tensors in com-
plex domain, adding time embedding to the order 3 decomposition
of ComplEx. Goel et al. [7] suggest to learn entity representation
that changes over time, transforming part of the embedding with
sinusoidal activation of learned frequencies. While successfully
extending to temporal graphs, these models limit their inference to
the interaction of embeddings in the latent space, hence inherently
lack interpretation over model’s reasoning process.

Meanwhile, path-based reasoning has been actively employed
for node prediction on knowledge graphs. Lin et al. [14] infuse

https://github.com/sharkmir1/T-GAP

Query: (COVID-19, infects, ?, 12/20)
(Eq. 6) Query
Vectorization

Preliminary GNN
(PGNN)

Δ𝑡!

Δ𝑡"

Δ𝑡#

Neighborhood
Encoding

A B

C

Math

Bat

COVID-19

studies
@12/20

infects
@12/18

occurs from
@12/17 infects

@12/21

plays with
@12/20

met
@12/19

Subgraph GNN
(SGNN)

Neighborhood
Encoding (Eq. 4)

(Eq. 5) Query
Context Fusion

Attention Flow

Attention
Propagation

Subgraph Sampling

(COVID-19, infects, B, 12/20)
For step 𝑡 = 1,⋯ , 𝑇

𝐠!
(#)

𝐡!

𝐡!

𝐪 𝐺%&'
(#)

𝑎!
(#())

𝑎!
(*) A B

C

Math

Bat

COVID-19

studies
@12/20

infects
@12/18

occurs from
@12/17 infects

@12/21

plays with
@12/20

met
@12/19

Predicted
answer

Low High
Attention score

Figure 2: Overview of T-GAP. Starting from the query head, T-GAP explores relevant nodes and edges by iteratively propagat-

ing attention, and reaches at the target entity after the final propagation step.

multi-hop path information into entity representation, using addi-
tive composition of relation embeddings. Das et al. [3] and Lin et al.
[13] consider KG reasoning problem as partially observed Markov
Decision Process, training a policy network that starts traversing
from the query head and reaches at the predicted tail entity. Xu et al.
[24] propose a soft approximation of path traversal with attention
distribution. T-GAP aligns with these line of works by exploring
informative paths relevant to the input query with attention propa-
gation, to maximally utilize the KG structure during the decoding
process.

Lastly, we find connections to our work from recently suggested
GNNs for dynamic graphs. Pareja et al. [18] employs RNN to evolve
GCN parameters across time. Han et al. [8] present Graph Hawkes
Neural Network, modeling temporal dependency between events
with Hawkes process. While these works focus on modeling the
evolution of the graph as whole, we discuss a new methodology of
encoding temporal displacement between each event and the input
query, which better suits our goal to explore query-relevant paths
and reach the answer node.

3 PROPOSED METHOD

3.1 Overview

First, we denote TKG as𝐺𝐾𝐺 = {(𝑣, 𝑟,𝑢, 𝑡)} ⊆ 𝑉𝐾𝐺 ×𝑅𝐾𝐺 ×𝑉𝐾𝐺 ×
𝑇𝐾𝐺 , where𝑉𝐾𝐺 is a set of entities,𝑅𝐾𝐺 is a set of relations, and𝑇𝐾𝐺
is a set of timestamps associated with the relations. Given the graph
𝐺𝐾𝐺 and query q = (𝑣𝑞𝑢𝑒𝑟𝑦, 𝑟𝑞𝑢𝑒𝑟𝑦, ?, 𝑡𝑞𝑢𝑒𝑟𝑦), TKG completion is
formulated as predicting 𝑢 ∈ 𝑉𝐾𝐺 the most probable to fill in the
query. Note that head entity prediction (?, 𝑟𝑞𝑢𝑒𝑟𝑦, 𝑢𝑞𝑢𝑒𝑟𝑦, 𝑡𝑞𝑢𝑒𝑟𝑦)
can be evaluated in a similar way after adding inverse edge of
each triple to 𝐺𝐾𝐺 . We denote ←−𝑁 𝑖 as a set of incoming neighbor
nodes of 𝑣𝑖 , i.e. nodes posessing edges toward 𝑣𝑖 , and

−→
𝑁 𝑖 as a set of

outgoing neighbor nodes of 𝑣𝑖 . With T-GAP, we aim to resolve the
two aforementioned issues of concurrent TKG completion models -
(1) Encoder-side: suboptimal utilization of temporal and structural
information residing in the graph, and (2) Decoder-side: lack of

multi-hop reasoning and interpretability in finding the optimal
answer.

Regarding the first issue, Hu et al. [9] has shown preferable per-
formance in node classification by introducing HGT, a GNN with
relative temporal encoding between node-associated timestamps.
However, one should note that TKG completion is inherently dif-
ferent from other graph-related tasks in that it is query-dependent.
Depending on the type of query, the usefulness of temporal in-
formation in the neighborhood of each entity dramatically shifts.
Hence, unlike HGT, T-GAP fuses neighborhood information of each
entity while focusing on the temporal displacement between the
query timestamp, and each edge to be encoded. Also, we decompose
the encoding stage into two GNNs operating on different topology
of the input graph: Preliminary GNN (PGNN) and Subgraph GNN
(SGNN). The decomposition not only helps in extracting only the
query-relevant information from the original graph, but also scales
up the encoder by query-dependent pruning of irrelevant edges.

T-GAP handles the second issue by attention propagation-based
decoder, namely Attention Flow. Unlike scoring function and recur-
rent decoder, Attention Flow naturally allows multi-hop reasoning
by propagating attention through existing edges in the graph. Also,
the inferred attention distribution provides us with better inter-
pretability, which will be thoroughly analyzed in the experiments.

Figure 2 illustrates an overview of T-GAP’s reasoning process.
Given 𝐺𝐾𝐺 and the query, in the encoding phase, T-GAP first uses
PGNN to create preliminary node feature h𝑖 for all entities in the
𝐺𝐾𝐺 . Next, at each decoding step 𝑡 = 1, · · · ,𝑇 , T-GAP iteratively
samples a subgraph 𝐺 (𝑡)

𝑠𝑢𝑏
from 𝐺𝐾𝐺 , that consists only of query-

relevant nodes and edges. For each entity 𝑖 included in𝐺 (𝑡)
𝑠𝑢𝑏

, SGNN
creates query-dependent node feature g(𝑡)

𝑖
, incorporating the query

vector q and the preliminary feature h𝑖 . Using both h𝑖 and g(𝑡)
𝑖

,
Attention Flow computes transition probability to propagate the
attention value of each node to its reachable neighbor nodes, cre-
ating the next step’s node attention distribution 𝑎 (𝑡+1)

𝑖
. After the

final propagation step 𝑇 2, the answer to the input query is inferred
as the node with the highest attention value 𝑎 (𝑇)

𝑖
.

3.2 Preliminary GNN

Given𝐺𝐾𝐺 , T-GAP first randomly initializes node feature h𝑖 for all
𝑣𝑖 ∈ 𝑉𝐾𝐺 . Then, to contextualize the representation of entities in
𝐺𝐾𝐺 with the graph structure, each layer in PGNN updates node
feature h𝑖 of entity 𝑣𝑖 by attentively aggregating 𝑣𝑖 ’s neighborhood
information. The important intuition underlying PGNN is that
the temporal displacement between timestamps of the query and
each event is integral to capture the time-related dynamics of each
entity. Therefore, for each timestamp 𝑡𝑖 𝑗 of edge 𝑒𝑖 𝑗 in 𝐺𝐾𝐺 , we
resolve to separately encode the sign andmagnitude of the temporal
displacement △𝑡𝑖 𝑗 = 𝑡𝑖 𝑗 − 𝑡𝑞𝑢𝑒𝑟𝑦 . Concretely, PGNN computes
message m𝑖 𝑗 from entity 𝑣𝑖 to 𝑣 𝑗 as follows:

m𝑖 𝑗 = W𝜆 (△𝑡𝑖 𝑗) (h𝑖 + 𝝆𝑖 𝑗 + 𝝉 |△𝑡𝑖 𝑗 |)

where W𝜆 (△𝑡𝑖 𝑗) =

W𝑝𝑎𝑠𝑡 if △𝑡𝑖 𝑗 < 0
W𝑝𝑟𝑒𝑠𝑒𝑛𝑡 if △𝑡𝑖 𝑗 = 0
W𝑓 𝑢𝑡𝑢𝑟𝑒 if △𝑡𝑖 𝑗 > 0

(1)

𝝆𝑖 𝑗 is a relation-specific parameter associated with 𝑟𝑖 𝑗 which de-
notes the relation that connects 𝑣𝑖 to 𝑣 𝑗 . In addition to the entity and
relation, we learn the discretized embedding of size of temporal dis-
placement, i.e. 𝝉 |△𝑡𝑖 𝑗 | . We take account of the sign of displacement
by applying sign-specific weight for each event.

Next, the new node feature h′
𝑗
is computed by attention weighted

sum of all incoming messages to 𝑣 𝑗 :

h′𝑗 =
∑
𝑖∈←−𝑁 𝑗

𝑎𝑖 𝑗m𝑖 𝑗 ,

𝑎𝑖 𝑗 = softmax𝑖 (𝛼𝑖 𝑗),
𝛼𝑖 𝑗 = LeakyReLU

(
(W𝑄h𝑗)⊤ (W𝐾m𝑖 𝑗)

) (2)

The attention values are computed by applying softmax over all
incoming edges of 𝑣 𝑗 , with h𝑗 as query and m𝑖 𝑗 as key.

In addition, we extend this attentive aggregation scheme tomulti-
headed attention, which helps to stabilize the learning process and
jointly attend to different representation subspaces [20]. Hence our
message aggregation scheme is modified to:

h′𝑗 =
𝐾
𝑘=1

∑
𝑖∈←−𝑁 𝑗

𝑎𝑘𝑖 𝑗m
𝑘
𝑖 𝑗 (3)

concatenating independently aggregated neighborhood features
from each attention heads, where 𝐾 is a hyperparameter indicating
the number of attention heads.

3.3 Subgraph GNN

At each decoding step 𝑡 , SGNN updates node feature g𝑖 for all en-
tities that are included in the induced subgraph of current step,
𝐺
(𝑡)
𝑠𝑢𝑏

. We present the detailed procedure of subgraph sampling in
upcoming section. Essentially, SGNN not only contextualizes g𝑖
with respective incoming edges, but also infuses the query context
vector with the entity representation. First, the subgraph features,
for entities newly added to the subgraph, are initialized to their cor-
responding preliminary features h𝑗 . Next, SGNN performs message
2𝑇 is a hyperparameter specific to the input graph.

propagation, using the same message computation and aggregation
scheme as PGNN (Eq. 1-3), but with separate parameters:

g̃′𝑗 =
𝐾
𝑘=1

∑
𝑖∈←−𝑁 𝑗

𝑎𝑘𝑖 𝑗m
𝑘
𝑖 𝑗 (4)

This creates an intermediate node feature g̃′
𝑗
. The intermediate

features are then concatenated with query context vector q, and
linear-transformed back to the node embedding dimension, creating
new feature g′

𝑗
:

g′𝑗 = W𝑔 [g̃′𝑗 ∥ q] (5)

q=W𝑐×LeakyReLU
(
W𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (h𝑞𝑢𝑒𝑟𝑦+𝝆𝑞𝑢𝑒𝑟𝑦)

)
(6)

where h𝑞𝑢𝑒𝑟𝑦 is the preliminary feature of 𝑣𝑞𝑢𝑒𝑟𝑦 , and 𝝆𝑞𝑢𝑒𝑟𝑦 is
the relation parameter for 𝑟𝑞𝑢𝑒𝑟𝑦 .

3.4 Attention Flow

T-GAP models path traversal with the soft approximation of at-
tention flow, iteratively propagating the attention value of each
node to its outgoing neighbor nodes. Initially, the node attention
is initialized to 1 for 𝑣𝑞𝑢𝑒𝑟𝑦 , and 0 for all other entities. Hereafter,
at each step 𝑡 , Attention Flow propagates edge attention 𝑎 (𝑡)

𝑖 𝑗
and

aggregates them to node attention 𝑎 (𝑡)
𝑗

:

𝑎
(𝑡+1)
𝑖 𝑗

= T (𝑡+1)
𝑖 𝑗

𝑎
(𝑡)
𝑖
, 𝑎
(𝑡+1)
𝑗

=
∑
𝑖∈←−𝑁 𝑗

𝑎
(𝑡+1)
𝑖 𝑗

𝑠 .𝑡 .
∑
𝑖

𝑎
(𝑡+1)
𝑖

= 1,
∑
𝑖 𝑗

𝑎
(𝑡+1)
𝑖 𝑗

= 1

The key here is the transition probability T𝑖 𝑗 . In this work, we
define T𝑖 𝑗 as applying softmax over the sum of two scoring terms,
regarding both the preliminary feature h, and the subgraph feature
g:

T (𝑡+1)
𝑖 𝑗

= softmax𝑗 (𝑠𝑐𝑜𝑟𝑒 (g(𝑡)𝑖 , g(𝑡)
𝑗
, 𝝆𝑖 𝑗 ,𝝉 |△𝑡𝑖 𝑗 |) +

𝑠𝑐𝑜𝑟𝑒 (g(𝑡)
𝑖
, h𝑗 , 𝝆𝑖 𝑗 ,𝝉 |△𝑡𝑖 𝑗 |)),

𝑠𝑐𝑜𝑟𝑒 (i, j, r,𝝉) = 𝜎
(
(W𝑄 i)⊤ (W𝐾 (j + r + 𝝉))

)
The first scoring term 𝑠𝑐𝑜𝑟𝑒 (g(𝑡)

𝑖
, g(𝑡)
𝑗
, 𝝆𝑖 𝑗 ,𝝉 |△𝑡𝑖 𝑗 |) accounts only

for subgraph feature g𝑖 and g𝑗 , giving additional point to entities
that are already included in the subgraph (note that g𝑖 is initialized
to zero for entities not yet included in the subgraph). Meanwhile, the
second scoring term 𝑠𝑐𝑜𝑟𝑒 (g(𝑡)

𝑖
, h𝑗 , 𝝆𝑖 𝑗 ,𝝉 |△𝑡𝑖 𝑗 |)) could be regarded

as exploring term, as it relatively prefers entities not included in the
subgraph, by modeling the interaction between g𝑖 and h𝑗 .

3.5 Subgraph Sampling

The decoding process of T-GAP depends on the iterative sampling
of query-relevant subgraph 𝐺 (𝑡)

𝑠𝑢𝑏
. The initial subgraph 𝐺 (0)

𝑠𝑢𝑏
before

the first propagation step contains only one node, 𝑣𝑞𝑢𝑒𝑟𝑦 . As the
propagation step proceeds, edges with high relevance to the input
query, measured by the size of attention value assigned to the edges,
are added to the previous step’s subgraph. Specifically, the subgraph
sampling at step 𝑡 proceeds as follows:
• Find 𝑥 number of core nodes with highest (nonzero) node
attention value 𝑎 (𝑡−1)

𝑖
at the previous step.

1
	𝑣$%&'(

0.4

.07

.03

0.5	𝑣$%&'(0.03

0.4

0.5

0.1

.03

0.2	𝑣$%&'(
0.07

0.3

0.20.1
0.5

0.1

𝑡 = 0 𝑡 = 1 𝑡 = 2

0.1

0.2	𝑣$%&'(

0.50.4

.07

0.5	𝑣$%&'(
1
	𝑣$%&'(

𝐺3%4
(6) 𝐺3%4

(8) 𝐺3%4
(9)

Su
bg

ra
ph

 S
am

pl
in

g
Sa

m
pl

ed
 S

ub
gr

ap
h

Figure 3: Example of subgraph sampling inT-GAP (Section 3.5). The graphs above represent the respective node / edge attention

distribution at the initial state (𝑡 = 0), after the first propagation step (𝑡 = 1), and after the second propagation step (𝑡 = 2). The
graphs below show the sampled subgraph at each step 𝑡 . 𝑥 (= 2) orange nodes are the core nodes retrieved at a step, and 𝑦 (= 3)
dashed edges from each core node are candidate edges for the sampled subgraph. Among the candidate edges, 𝑧 (= 2) orange
edges are newly added to the previous subgraph.

• For each of the core node, sample 𝑦 number of edges that
originate from the node.
• Among 𝑥 · 𝑦 sampled edges, find 𝑧 number of edges with
highest edge attention value 𝑎 (𝑡)

𝑖 𝑗
at the current step.

• Add the 𝑧 edges to 𝐺 (𝑡−1)
𝑠𝑢𝑏

.

In this module, 𝑥,𝑦, 𝑧 are hyperparameters. Intuitively, we only
collect ‘important’ events that originate from ‘important’ entities
(core nodes) with respect to the query, while keeping the subgraph
size under control (edge sampling).

Figure 3 is an illustrative example for the subgraph sampling
procedure in T-GAP. The hyperparameters for the example are
as follows: 𝑥 = 2 (the maximum number of core nodes), 𝑦 = 3
(the maximum number of candidate edges, considered by each
core node), and 𝑧 = 2 (the number of sampled edges added to the
subgraph).

In the initial state, the only node associated with nonzero atten-
tion 𝑎 (0)

𝑖
is the query head 𝑣𝑞𝑢𝑒𝑟𝑦 . Also, the initial subgraph 𝐺

(0)
𝑠𝑢𝑏

consists only of the node 𝑣𝑞𝑢𝑒𝑟𝑦 . At the first decoding step 𝑡 = 1,
T-GAP first finds top-𝑥 core nodes (where 𝑥 = 2) w.r.t. nonzero
node attention scores 𝑎 (0)

𝑖
of the previous step 𝑡 = 0. Since the only

node with nonzero attention value is 𝑣𝑞𝑢𝑒𝑟𝑦 , it is retrieved as the
core node. Next, T-GAP randomly samples at most 𝑦 = 3 edges
that originate from the core node (e.g. dashed edges with weights).
Among the sampled edges, it selects top-𝑧 (where 𝑧 = 2) edges in
the order of edge attention values 𝑎 (1)

𝑖 𝑗
at the current step; then,

they are added to 𝐺 (0)
𝑠𝑢𝑏

, resulting in the new subgraph 𝐺 (1)
𝑠𝑢𝑏

.
At the second decoding step 𝑡 = 2, T-GAP again finds 𝑥 core

nodes that correspond to highest attention values 𝑎 (1)
𝑖

(e.g. nodes
annotated with 0.1 and 0.2, respectively). Then,𝑦 outgoing edges for

each core node are sampled; among 𝑥 ·𝑦 sampled edges, 𝑧 edges with
highest edge attention values 𝑎 (2)

𝑖 𝑗
are added to 𝐺 (1)

𝑠𝑢𝑏
, creating the

new subgraph 𝐺 (2)
𝑠𝑢𝑏

. As seen in Figure 3, the incremental subgraph
sampling scheme allows our model to iteratively expand the range
of nodes and edges to attend, while guaranteeing that the critical
nodes and edges in the previous steps are kept included in the latter
subgraphs.

By flexibly adjusting the subgraph related hyperparameters 𝑥,𝑦,
and 𝑧, T-GAP is readily calibrated between reducing computational
complexity and optimizing the predictive performance. Intuitively,
with more core nodes, more sampled edges, and more edges added
to the subgraph, T-GAP can better attend to the substructure of TKG
that otherwise might have been discarded. Meanwhile, with small
𝑥,𝑦, and 𝑧, T-GAP can easily scale-up to large graphs by reducing
the number of message-passing operations in SGNN.

3.6 Model Training

We partition the triples in𝐺𝐾𝐺 into train, valid, and test sets. In the
training phase, from each of the triple (𝑣𝑡𝑟𝑎𝑖𝑛, 𝑟𝑡𝑟𝑎𝑖𝑛, 𝑢𝑡𝑟𝑎𝑖𝑛, 𝑡𝑡𝑟𝑎𝑖𝑛)
in the train set, we generate a query (𝑣𝑡𝑟𝑎𝑖𝑛, 𝑟𝑡𝑟𝑎𝑖𝑛, ?, 𝑡𝑡𝑟𝑎𝑖𝑛) by
masking 𝑢𝑡𝑟𝑎𝑖𝑛 . As T-GAP consists only of differentiable opera-
tions, the model can be trained end-to-end by given each query
(𝑣𝑡𝑟𝑎𝑖𝑛, 𝑟𝑡𝑟𝑎𝑖𝑛, ?, 𝑡𝑡𝑟𝑎𝑖𝑛), maximizing on the node attention assigned
to 𝑢𝑡𝑟𝑎𝑖𝑛 after 𝑇 propagation steps. Hence, the loss function is
simply defined as:

L = −
∑

𝑖 ∈ train
log𝑎 (𝑇)𝑢𝑖

Note that although edge sampling brings in stochasticity to T-
GAP’s inference, this does not hinder the end-to-end training of

Table 2: T-GAP outperforms baselines in all three benchmarks, over all metrics. We use official implementation of DE-SimplE,

and T(NT)ComplEx for Wikidata11k. Other results with [▼] are from García-Durán et al. [6], results with [⋄] are from Goel

et al. [7], and results on T(NT)ComplEx are from Lacroix et al. [12].

ICEWS14 ICEWS05-15 Wikidata11k

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE [▼] 0.280 9.4 - 63.7 0.294 9.0 - 66.3 0.316 18.1 - 65.9
DistMult [▼] 0.439 32.3 - 67.2 0.456 33.7 - 69.1 0.316 18.1 - 66.1
ConT [⋄] 0.185 11.7 20.5 31.5 0.163 10.5 18.9 27.2 - - - -

TTransE [▼] 0.255 7.4 - 60.1 0.271 8.4 - 61.6 0.488 33.9 - 80.6
HyTE [⋄] 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 - - - -

TA-TransE [▼] 0.275 9.5 - 62.5 0.299 9.6 - 66.8 0.484 32.9 - 80.7
TA-DistMult [▼] 0.477 36.3 - 68.6 0.474 34.6 - 72.8 0.700 65.2 - 78.5
DE-SimplE [⋄] 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8 0.310 18.4 31.8 62.5
TComplEx 0.560 47.0 61.0 73.0 0.580 49.0 64.0 76.0 0.731 67.3 76.2 84.5

TNTComplEx 0.560 46.0 61.0 74.0 0.600 50.0 65.0 78.0 0.718 65.4 74.9 85.6
T-GAP 0.610 50.9 67.7 79.0 0.670 56.8 74.3 84.5 0.778 69.7 84.4 90.3

the model. Since the sampling is not parameterized and we only
use node feature g from the sampled subgraph, gradients back-
propagate through g, not through the sampling operation.

4 EXPERIMENT

We run experiments to answer the following questions.
• Performance (Section 4.2). How well does T-GAP com-
plete incomplete queries on different benchmarks?
• Temporal generalization (Section 4.3). How well does
T-GAP generalize to unseen timestamps?
• Interpretability (Section 4.4). Does T-GAP provide inter-
pretability, and align with human intuition?

4.1 Experimental Setting

4.1.1 Datasets. We evaluate our proposed method on three stan-
dard benchmark datasets shown in Table 7 for TKG completion:
ICEWS14, ICEWS05-15, and Wikidata11k, all suggested by García-
Durán et al. [6]. ICEWS14 and ICEWS05-15 are subsets of ICEWS3,
each containing socio-political events in 2014, and from 2005 to
2015 respectively. Wikidata11k is a subset of Wikidata4, posessing
facts of various timestamps that span from A.D. 25 to 2020. All facts
in Wikidata11k are annotated with additional temporal modifier,
occurSince or occurUntil. For the sake of consistency and simplic-
ity, we follow García-Durán et al. [6] to merge the modifiers into
predicates rather than modeling them in separate dimension (e.g.
(A, loves, B, since, 2020) transforms to (A, loves-since, B, 2020)).

4.1.2 Baselines. We compare T-GAP with representative static KG
embeddings, TransE and DistMult, and state-of-the-art embedding
-based baselines on temporal KGs, including ConT [16], TTransE
[11], HyTE [4], TA [6], DE-SimplE [7], and T(NT)ComplEx [12].

4.1.3 Implementation Details. For each dataset, we create 𝐺𝐾𝐺
with only the triples in the train set. We add inverse edges to 𝐺𝐾𝐺
for proper path-based inference on reciprocal relations. Also, we
follow Xu et al. [23] by adding self-loops to all entities in the graph,

3https://dataverse.harvard.edu/dataverse/icews
4https://www.wikidata.org/wiki/Wikidata:Main_Page

Table 3: Ablation study results on ICEWS14, compared to the

best configuration. Results annotated ‘T-GAP’ are the best

performance of T-GAP with temporal displacement encod-

ing, 1-layer PGNN, and subgraph sampling.

Model MRR Hits@1 Hits@3 Hits@10
No Displacement 0.477 35.7 53.9 71.5
No Subgraph 0.598 49.3 66.8 78.5
No PGNN 0.590 49.9 66.5 78.4

2-layer PGNN 0.605 50.2 67.3 78.9
T-GAP 0.610 50.9 67.7 79.0

allowing the model to stay at the ‘answer node’ if it reaches an
optimal entity in 𝑡 < 𝑇 steps. Following prior works [6, 7, 12], we
evaluate T-GAP in both head and tail entity prediction and aver-
age the metrics. To measure T-GAP’s performance in head entity
prediction, we add reciprocal triples to valid and test sets too. For
all datasets, we find through empirical evaluation that setting the
maximal path length 𝑇 = 3 results in the best performance. Fol-
lowing previous works, we fix the dimension of entity / relation
/ displacement embedding to 100. Except for the embedding size,
we search for the best set of hyperparameters using grid-based
search, choosing the value with the best Hits@1 while all other hy-
perparameters are fixed. We provide further implementation details
including hyperparameter search bounds and the best configuration
in Supplement A.

4.2 Benchmark Performance

Table 2 shows the overall evaluation result of T-GAP against base-
line methods. Along with Hits@1, 3, 10, we report MRR of the
ground-truth entity, compared to the baseline methods. As seen
in the table, T-GAP outperforms baseline models in all the bench-
marks, improving up to 10% relative performance consistently over
all metrics. We find through ablation study that the improvements
are mainly contributed from resolving the two shortcomings of
pre-existing TKG embeddings, which we indicate in earlier sections

Figure 4: Edge attention distribution over different temporal displacements. Note that y-axis is in log scale. For better visu-

alization, we cut the range of temporal displacement to [−100, 100] in all charts. T-GAP learns to effectively attend on events

with specific temporal distance from the query time, depending on the relation type of the query.

- absence of 1) neighborhood encoding scheme, and 2) path-based
inference with scalable subgraph sampling.

4.2.1 Model Variants and Ablation. To further examine the effect
of our proposed method in solving the aforementioned two prob-
lems, we conduct an ablation study as shown in Table 3. First, we
consider T-GAP without temporal displacement encoding. In both
PGNN and SGNN, we do not consider the sign and magnitude of
temporal displacement, and simply learn the embedding of each
timestamp as is. While computing the message m𝑖 𝑗 , the two GNNs
simply add the time embedding 𝝉𝑡𝑖 𝑗 to h𝑖 + 𝝆𝑖 𝑗 . No sign-specific
weight is multiplied, and all edges are linear-transformed with
the same weight matrix. In this setting, T-GAP’s performance on
ICEWS14 degrades about 30% in Hits@1, and performs similar to
TA-DistMult in Table 2. This result attests to the importance of
temporal displacement for the neighborhood encoding in temporal
KGs.

Next, to analyze the effect of subgraph sampling on overall per-
formance, we resort to a new configuration of T-GAP where no
subgraph sampling is applied, and SGNN creates node feature g𝑖 for
all entities in 𝐺𝐾𝐺 . Here, T-GAP’s performance slightly degrades
about 1 percent in all metrics. This implies the importance of sub-
graph sampling to prune query-irrelevant edges, helping T-GAP
concentrate on the plausible substructure of the input graph.

Finally, we analyze the effect of PGNN by training T-GAP with
different numbers of PGNN layers. We find that T-GAP, trained
with 1-layer PGNN, performs superior to the model without PGNN
by absolute gain of 1% in MRR. However, adding up more layers
in PGNN gives only a minor gain, or even aggravates the test set
accuracy, mainly owing to early overfitting on the train set.

4.3 Temporal Generalization

We conduct an additional study that measures the performance
of T-GAP in generalizing to queries with unseen timestamps. Fol-
lowing Goel et al. [7], we modify ICEWS14 by including all triples
except those on 5𝑡ℎ , 15𝑡ℎ , 25𝑡ℎ day of each month in the train set,
and creating valid and test sets using only the excluded triples.
The performance of T-GAP against the strongest baselines in this

Table 4: Generalization performance over unseen times-

tamps in ICEWS14. Accounting for relative displacement

rather than independent timestamps, T-GAP is the most ro-

bust to queries with unseen timestamps.

Model MRR Hits@1 Hits@3 Hits@10
DE-SimplE 0.434 33.3 49.2 62.4
TComplEx 0.443 34.8 49.2 62.5

TNTComplEx 0.444 34.6 49.4 63.5
T-GAP 0.483 37.2 54.6 69.0

dataset are presented in Table 4. In this setting, DE-SimplE and
T(NT)ComplEx perform much more similar to each other than in
Table 2, while T-GAP performs superior to all baselines. DE-SimplE
shows strength in generalizing over time, as it represents each en-
tity as a continuous function over temporal dimension. However,
the model is weak when the range of timestamps is large and sparse,
as shown for Wikidata in Table 2. Meanwhile, TComplEx and TNT-
ComplEx show fair performance in Wikidata, but poorly infer for
unseen timestamps, as they only learn independent embeddings
of discrete timestamps. On the contrary to these models, T-GAP
not only shows superior performance in all benchmarks but also
is robust to unseen timestamps, by accounting for the temporal
displacement, not the independent time tokens.

4.4 Interpretability

We provide an in-depth analysis on the model’s relational reasoning
process to give a clear presentation of T-GAP’s interpretability. The
analysis is twofold: first we discuss the relation between temporal
displacements and the type of the query, using the attention dis-
tribution over different timestamps. Next, we give a case study in
T-GAP’s reasoning process for a given query, specifically listing the
salient edges that are given high attention values during the path
exploration.

4.4.1 Relation Type and Temporal Displacement. Intuitively, the
query relation type, and the temporal displacement between rele-
vant events and the query are closely correlated. For a query such as

Table 5: List of predominant edges for a case study. Numbers in the right are the corresponding edge attention assigned to each

edge. Predicates in red color carry negative meaning, while predicates in blue color hold positive meaning. We find through

the case study that the attention propagation allows T-GAP to fix its misleading focus on sub-optimal entities.

Query (North_Korea, threaten, ?, 2014/04/29)

1st Step

(North_Korea, threaten, Japan, 2014/05/12) 0.057
(North_Korea, threaten, Japan, 2014/12/18) 0.054

(North_Korea, make_statement, South_Korea, 2014/04/29) 0.044
(North_Korea, make_an_appeal, Japan, 2014/10/01) 0.041
(North_Korea, threaten, South_Korea, 2014/08/01) 0.040

2nd Step

(South_Korea, threaten, North_Korea, 2014/04/22) 0.150
(Japan, release_person, North_Korea, 2014/07/28) 0.078

(South_Korea, criticize_or_denounce, North_Korea, 2014/04/28) 0.051
(Japan, express_intent_to_cooperate, North_Korea, 2014/02/28) 0.039

(South_Korea, make_statement, North_Korea, 2014/04/28) 0.037

3rd Step

(North_Korea, make_statement, South_Korea, 2014/04/29) 0.189
(North_Korea, accuse, South_Korea, 2014/04/15) 0.121

(North_Korea, criticized_or_denounced_by, South_Korea, 2014/04/28) 0.052
(North_Korea, deny_responsibility, South_Korea, 2014/04/25) 0.032
(South_Korea, release_person, North_Korea, 2014/04/14) 0.021

Answer South_Korea

(PersonX, member_of_sports_team, ?, 𝑡1), events that happened 100
years before 𝑡1 or 100 years after 𝑡1 will highly likely be irrelevant.
On the contrary, for a query given as (NationX, wage_war_against,
?, 𝑡2), one might have to consider those events far-off the time of
interest. To verify whether T-GAP understands this implicit correla-
tion, we analyze the attention distribution over edges with different
temporal displacements, when T-GAP is given input queries with a
specific relation type.

The visualization of the distributions for three relation types are
presented in Figure 4. For all queries in the test set of WikiData11k
with a specific relation type, we visualize the average attention
value assigned to edges for each temporal displacement (red bars).
We compare this with the original distribution of temporal displace-
ment between query and each edge, counted for all edges reachable
in 𝑇 steps from the head entity 𝑣𝑞𝑢𝑒𝑟𝑦 (blue bars). Remarkably, on
the contrary with the original distribution of high variance over
wide range of displacement, T-GAP tends to focus most of the at-
tention to edges with specific temporal displacement, depending
on the relation type.

For queries with relation award_won, the attention distribution is
extremely skewed, focusing over 90% of the attention to events with
displacement = 0 (i.e. events in the same year with the query). The
skewed distribution mainly results from the fact that the majority
of the ‘award’ entities in Wikidata11k are annual awards, such as
Latin Grammy Award, or Emmy Award. The annual property of
the candidate entities naturally makes T-GAP to focus on clues
such as the nomination of awardees, or significant achievement of
awardees in the year of interest.

Next, we test T-GAP for queries with relation member_of_sports-
_team-occurUntil. In this case, the attention is more evenly dis-
tributed than the former case, but slightly biased toward past events.
We find that this bias is mainly due to the existence of temporally
reciprocal edge (i.e. member_of_sports_team-occurSince) in 𝐺𝐾𝐺 ,
which is a crucial key in solving the given query. Here, T-GAP sends
more than half of the attention value (on average) to an edge that

starts from the query head with relation member_of_sports_team-
occurSince, that happened few years before the time of interest. The
inference follows our intuition to look for the last sports club where
the player became member of, before the timestamp of the query.

The third case with relation educated_at-occurSince is the oppo-
site of the second case. Majority of the attention have been con-
centrated on events in 1-5 years after the query time, searching for
the first event with relation educated_at-occurUntil, that happened
after the time of interest.

As the analysis suggests, T-GAP discovers important clues for
each relation type, adequately accounting for the temporal displace-
ment between the query and related events. The results show that
T-GAP not only finds correlation between the displacement and
query type in an interpretable way, but also aligns with human
intuition when looking for meaningful temporal events.

4.4.2 Reasoning Process. We resort to a case study to provide a de-
tailed view on T-GAP’s attention-based decoding. In this study, our
model is given an input query (North_Korea, threaten, ?, 2014/04/29)
in ICEWS14 where the correct answer is South_Korea. For each
propagation step, we list top-5 edges that received the highest at-
tention value in the step.

The predominant edges and their associated attention values
are shown in Table 5. In the first step, T-GAP attends to various
events pertinent to North_Korea, that mostly include negative pred-
icates against other nations. As seen in the table, the two plausible
query-filling candidates are Japan, and South_Korea. Japan receives
slightly more attention than South_Korea, as it is associated with
more relevant facts such as “North_Korea threatened Japan at May
12th”.

In the second step, however, T-GAP discovers additional rele-
vant facts, that could be crucial in answering the given query. As
these facts have either Japan or South _Korea as head entity, they
could not be discovered in the first propagation step, which only
propagates the attention from the query head North_Korea. T-GAP
attends to the events (South_Korea, threaten / criticize_or_denounce,

North_Korea) that happened only a few days before our time of
interest. These facts imply the strained relationship between the
two nations around the query time. Also, T-GAP finds that most
of the edges that span from Japan to North_Korea before/after few
months the time of interest, tend to be positive events. As a result,
in the last step, T-GAP propagates most of the node attention in
North_Korea to the events associated with South_Korea. Highest
attention have been assigned to the relation make_statement. Al-
though the relation itself does not hold a negative meaning, in
ICEWS14, make_statement is typically accompanied by threaten, as
entities do formally threaten other entities by making statements.

Through the case study, we find that T-GAP leverages the prop-
agation based decoding as a tool to fix its traversal over wrongly-
selected entities. Although Japan seemed like an optimal answer
in the first step, it understands through the second step that the
candidate was sub-optimal with respect to the query, propagating
the attention assigned to Japan back to North_Korea. T-GAP fixes
its attention propagation in the last step, resulting in a completely
different set of attended events compared to the first step. Such an
amendment would not have been possible with conventional ap-
proaches to path-based inference, which greedily select an optimal
entity to traverse at each decoding step.

5 CONCLUSION

In this paper, we propose a novel approach to TKG completion
named T-GAP, which explores a query-relevant substructure of
TKG with attention propagation. Unlike other embedding-based
models, the proposed method effectively gathers useful information
from the existing KG, by accounting for the temporal displacement
between the query and respective edges. Quantitative results show
that T-GAP not only achieves the state-of-the-art performance
consistently over all three benchmarks, but also competently gen-
eralizes to queries with unseen timestamps. Through extensive
analysis, we also show that the propagated attention distribution
well serves as an interpretable proxy of T-GAP’s reasoning process
and aligns well with human intuition.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of
Korea(NRF) funded by MSIT(2019R1A2C2004990). The Institute of
Engineering Research and ICT at Seoul National University pro-
vided research facilities for this work. U Kang is the corresponding
author. This work is done as a research project inside Seoul National
University.

REFERENCES

[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787–2795.

[2] Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and
Chunhong Pan. 2018. Structure-aware convolutional neural networks. In Ad-
vances in neural information processing systems. 11–20.

[3] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,
Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. 2018. Go for a
Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using
Reinforcement Learning. In International Conference on Learning Representations.

[4] Shib Sankar Dasgupta, Swayambhu Ray, Nath, and Partha Talukdar. 2018. Hyte:
Hyperplane-based temporally aware knowledge graph embedding. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. 2001–
2011.

[5] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

[6] Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. 2018. Learning
Sequence Encoders for Temporal Knowledge Graph Completion. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Brussels, Belgium, 4816–4821. https:
//www.aclweb.org/anthology/D18-1516

[7] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. 2019.
Diachronic embedding for temporal knowledge graph completion. arXiv preprint
arXiv:1907.03143 (2019).

[8] Zhen Han, Yuyi Wang, Yunpu Ma, Stephan Günnemann, and Volker Tresp. 2020.
Graph Hawkes Neural Network for Future Prediction on Temporal Knowledge
Graphs. In Automated Knowledge Base Construction.

[9] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. Association for Computing Machinery, New York, NY, USA,
2704–2710. https://doi.org/10.1145/3366423.3380027

[10] Inah Jeon, Evangelos E. Papalexakis, Christos Faloutsos, Lee Sael, and U. Kang.
2016. Mining billion-scale tensors: algorithms and discoveries. VLDB J. 25, 4
(2016), 519–544.

[11] Tingsong Jiang, Tianyu Liu, TaoGe, Lei Sha, Baobao Chang, Sujian Li, and Zhifang
Sui. 2016. Towards time-aware knowledge graph completion. In Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. 1715–1724.

[12] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. 2019. Tensor
Decompositions for Temporal Knowledge Base Completion. In International
Conference on Learning Representations.

[13] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-Hop Knowledge
Graph Reasoning with Reward Shaping. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Brussels, Belgium, 3243–3253.

[14] Yankai Lin, Zhiyua Liu, Huanbo Luan, Maosong Sun, Siwei Rao, and Song Liu.
2015. Modeling Relation Paths for Representation Learning of Knowledge Bases.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Lisbon, Portugal, 705–714.

[15] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2018. Entity-
Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in
Neural Information Retrieval. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Melbourne, Australia, 2395–2405.

[16] Yunpu Ma, Tresp, Volker, and Erik A Daxberger. 2019. Embedding models for
episodic knowledge graphs. Journal of Web Semantics 59 (2019), 100490.

[17] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. 2019. Learn-
ing Attention-based Embeddings for Relation Prediction in Knowledge Graphs.
In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, Florence, Italy.
https://www.aclweb.org/anthology/P19-1466

[18] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence.

[19] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
Conference on Machine Learning. International Conference on Machine Learning
(ICML).

[20] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[21] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable reasoning over knowledge graphs for recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 5329–5336.

[22] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI.

[23] Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong
Deng. 2019. Dynamically Pruned Message Passing Networks for Large-scale
Knowledge Graph Reasoning. In International Conference on Learning Represen-
tations.

[24] Xiaoran Xu, Songpeng Zu, Chengliang Gao, Yuan Zhang, and Wei Feng. 2018.
Modeling Attention Flow on Graphs. arXiv preprint arXiv:1811.00497 (2018).

[25] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[26] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song.
2018. Variational reasoning for question answering with knowledge graph. In
Thirty-Second AAAI Conference on Artificial Intelligence.

[27] Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhi-Ping Shi, Hui Xiong, and Qing
He. 2020. Relational Graph Neural Network with Hierarchical Attention for
Knowledge Graph Completion.. In AAAI. 9612–9619.

https://www.aclweb.org/anthology/D18-1516
https://www.aclweb.org/anthology/D18-1516
https://doi.org/10.1145/3366423.3380027
https://www.aclweb.org/anthology/P19-1466

A ADDITIONAL IMPLEMENTATION DETAIL

Table 6: Additional implementation detail of T-GAP.We report the hyperparameter search bounds and the used configurations,

along with the experimental environments.

Computing Infrastructure Tesla V100 GPU
Search Strategy Manual Tuning

Best Validation Hits@1 52.1 (ICEWS14), 56.8 (ICEWS05-15), 70.7 (Wikidata11k)

Hyperparameter Search Bound Experimental Setting

max path length 𝑇 choice[2, 3, 4] 3
number 𝑥 of core nodes choice[5, 10, 50, 100] 100 (ICEWS14), 10 (ICEWS05-15), 50 (Wikidata11k)

number 𝑦 of edges to sample choice[10, 50, 100, 200, 500] 500 (ICEWS14), 100 (ICEWS05-15), 200 (Wikidata11k)
number 𝑧 of edges to add choice[10, 50, 100, 200, 500] 500 (ICEWS14), 100 (ICEWS05-15), 200 (Wikidata11k)

number 𝐾 of attention heads choice[3, 4, 5, 6] 5
embedding dimension 100 100
number of epochs 10 10

batch size choice[8, 16, 32] 16 (ICEWS14), 8 (ICEWS05-15, Wikidata11k)
optimizer Adam Adam

learning rate loguniform-float[5e-2, 5e-5] 5e-4
lr scheduler reduce_on_plateau reduce_on_plateau

lr reduction factor 0.1 0.1
gradient clip norm uniform-integer[1, 5] 3 (ICEWS14, ICEWS05-15), 5 (Wikidata11k)

B DATASET STATISTICS

Table 7: Dataset Statistics for ICEWS14, ICEWS05-15, and Wikidata11k. The unit of the time span is year.

Dataset ICEWS14 ICEWS05-15 Wikidata11k

|𝑉𝐾𝐺 | 7,128 10,488 11,134
|𝑅𝐾𝐺 | 230 251 95
|𝑇𝐾𝐺 | 365 4017 328
|𝐺𝐾𝐺 | 90,730 479,329 150,079

Time Span 2014 2005-2015 25-2020

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Overview
	3.2 Preliminary GNN
	3.3 Subgraph GNN
	3.4 Attention Flow
	3.5 Subgraph Sampling
	3.6 Model Training

	4 Experiment
	4.1 Experimental Setting
	4.2 Benchmark Performance
	4.3 Temporal Generalization
	4.4 Interpretability

	5 Conclusion
	Acknowledgments
	References
	A Additional Implementation Detail
	B Dataset Statistics

