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RÉSUMÉ . Avec la disponibilité croissante des bases de connaissances structurées à grandes 

échelles et des techniques de traitement automatique du langage naturel (TALN) aidées par 

des techniques avancées de recherche d'information (RI), les systèmes de questions-réponses 

(QR) sont entrés dans une ère de commercialisation. Cependant, les types de questions 

auxquelles on peut répondre sont un peu limités aux connaissances encyclopédiques qui sont 

souvent bien structurées sous forme de triplets ou, par ailleurs, localisées dans un segment de 

texte. Dans cette étude, nous proposons un graphe conceptuel basé sur les structures de 

questions-réponses (GCQR), qui permet l'inférence non-programmée et la représentation des 

connaissances à base de contexte. Cette approche a été mise en œuvre avec les techniques 

TALN pour générer non seulement des graphes conceptuels à partir du texte en question, 

mais aussi des algorithmes efficaces de correspondance graphique servant comme un 

mécanisme d'inférence, qui est pensé pour répondre à des questions, non seulement 

classiques mais aussi 'difficiles'. 

ABSTRACT. With the increasing availability of large-scale structured knowledge bases and 

natural language processing (NLP) techniques aided by advanced information retrieval (IR) 

techniques, question answering (QA) systems have entered into a commercialization era. 

However, the types of questions that can be answered are somewhat limited to encyclopedic 

knowledge that are often either well structured like triplets or localized in a text segment. In 

this work, we propose a conceptual graph based question answering (CGQA) framework that 

enables informal inference and context-driven knowledge representation. This approach has 

been implemented with NLP techniques for generating conceptual graphs from text and 

efficient graph matching algorithms as an inference mechanism, which is geared toward 

answering not only conventional but also 'hard' questions.  

MOTS-CLÉS: graphique conceptuel, cadre de questions réponses, appariement graphique 
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1. Introduction 

With the increasing availability of large-scale structured knowledge bases (KB) 

and natural language processing (NLP) techniques aided by advanced information 

retrieval (IR) techniques, question answering (QA) systems have entered into a 

commercialization era. A well-known example is IBM Watson that won a Jeopardy 

quiz contest against human champions (Ferrucci et al., 2010). QA technology has 

been considered for different applications including medical diagnosis assistance 

and law service assistance. 
However, the types of questions that can be answered are somewhat limited to 

encyclopedic knowledge that are often either well structured like triplets or localized 

in a text segment. In knowledge base based QA (KBQA) systems (Lopez et al., 

2007; Unger et al., 2012; Berant et al., 2014; Fader et al., 2014), a knowledge base 

is composed of set of triples. Each triple is meant to be a universal fact, and context 

information such as time, location, related objects, and topics from the original 

information source are rarely linked in KB. Therefore, KBQA usually has an 

advantage for relatively simple factoid questions.  

On the other hand, information retrieval based QA (IRQA) systems (Manandhar 

et al., 2008) lean heavily on statistical approaches and ad-hoc processing. They first 

retrieve documents that are similar to the question and then extract and rank answer 

candidates. IRQA has a natural weakness that it is hard to collect dispersed pieces of 

evidence among documents in a principled way. 
The existing QA techniques cannot handle some 'hard' questions because of two 

major reasons. They either rely on formal inference of fragmented and context-

independent knowledge units like triples or are based on ad-hoc question answering 

algorithms together with an identification of linguistic constructs like named entities, 

co-references, and semantic types of entities. The first problem is especially critical 

for questions that require evidences coming from more than one context, making it 

important to explicitly handle context in question answering. 
In this work, we propose a conceptual graph based question answering (CGQA) 

framework that enables context-driven knowledge representation and informal 

inference. This approach has been implemented with heavy NLP techniques for 

generating conceptual graphs from text, and efficient graph matching algorithms as 

an inference mechanism, which is geared toward answering not only conventional 

but also 'hard' questions. We describe how it applies to questions in a quiz contest 

similar to Jeopardy and demonstrate feasibility of the CGQA framework to help 

answering ‘hard’ questions that require a processing of contexts in a novel way. 
 

2. Related Work 

Building automatic QA system has been an active research area with a large 

number of researchers during the last decade. The KB-based question answering 

(KBQA) approach utilizes a massive KB such as Yago (Suchanek et al., 2007), 

DBpedia (Lehmann et al., 2013), and Freebase (Bollacker et al., 2008). Several QA 

systems use an RDF form of data as in a template-based SPARQL learner (TBSL) 

(Unger et al., 2012) and Parsempre (Berant et al., 2014). Since a conventional KB is 



 

curated and verified by humans, KBQA can provide relatively accurate answers. A 

recent approach is to automatically curate a KB with information extraction (IE) 

techniques. P. Yin (Yin et al., 2015) proposed to use n-tuple assertions and n-tuple 

open KB (nOKB) to answer questions with complex prepositional or adverbial 

constraints. 

KBQA has a fundamental limitation with the lack of an ability to discriminate 

against different contexts. Since knowledge in KB is represented in the form of 

fragmented triples, it tends to contain universal facts. Another limitation is the 

difficulty in approximate reasoning. Since KBQA usually makes inference by 

connecting triples, it is not straightforward to mimic probabilistic inference and 

answer ranking, which incur exponentially increasing computational cost.  

IRQA systems search raw text and thus can handle contextually sensitive 

questions. Since it heavily relies on statistical methods, however, some structural 

and semantic aspects in the original question and the text in the knowledge source 

cannot be enforced. IRQA also has a weakness as it usually relies on local search in 

extracting an answer, not being able to collect pieces of evidence dispersed among 

different documents. To overcome the problem of lost semantics, Manandhar et al. 

(2008) proposed to use different semantic features for an answer extraction process 

by using question types (factoid vs. non-factoid). 

Recently new QA systems based on a deep learning approach (deepQA) have 

been introduced (e.g. Yu et al., 2017). Although they are at an infant stage, they 

have a great potential with their high-dimensional information representation ability 

and flexibility. M. Tan (Tan et al., 2016) proposed two hybrid models which 

combine the strength of both recurrent and convolutional neural networks to deal 

with answer passage selection task. However, deepQA has a fundamental drawback 

as it is impossible to interpret an intermediate result of inference in most of cases. 

Therefore, several attempts have been proposed to link a symbolic approach like 

KBQA or IRQA and a deep learning based approach as a promising research area 

(Socher et al., 2013). 

3. Simplified Conceptual Graphs for QA 

Conceptual graphs (CG) are a knowledge representation language for a semantic 

network. It is a highly expressive system of logic with a direct mapping to and from 

natural languages (Sowa, 1992). With the definitional mechanisms, conceptual 

graphs can be used as an intermediate stage between natural languages and the rules 

and frames of expert systems and QA systems as well as an important tool for 

knowledge acquisition (Sowa, 1992).  In this work, we adopt and simplify the CG 

representation as a basis for representing the content of the text from which 

questions need to be answered.  

While the original conceptual graph framework has the knowledge 

representation power equivalent to first order logic and even has the potential for the 

second order logic with its flexibility, we take the liberty of relaxing some of the 



 

theories such as quantification so that we mainly follow its graph structure and the 

notion of type hierarchy so that the concepts and relations are considered at a 

semantic level. The resulting representation is much less formal but amenable for 

more flexible ‘inference’ based on graph matching. 

3.1. Key Elements in CGQA 

We first define a few key elements of conceptual graphs to be used, such as 

concepts and relations in such a way that they are suitable for QA tasks. 

Definition 1. (Concept) A concept 𝑐 ∈ 𝐶 is an abstract notion (e.g. ‘economy’) or 

an entity of a real-world (e.g. ‘tiger’ and ‘Obama’) mentioned in a text. A 

concept manifests itself in natural language text usually in the form of a noun or 

noun complex. C is a set of concepts, each of which is encoded with a unique 

identifier in the QA system. For the current implementation, we only consider 

concepts extracted from Wikipedia as it is the only resource from which an 

answer is obtained for questions. 

Definition 2. (Relation) A relation 𝑟 ∈ 𝑅 is a property of a concept or an action or 

a state between two concepts (e.g. ‘PARENT_OF’ and ‘LIVES_IN’). Like C, R 

is a set of relations, each of which is encoded with a unique identifier in the QA 

system. A relation is usually expressed in text with an adjective phrase, verb 

phrase, or prepositional phrase but can be revealed by a sequence of words 

between and around two concepts in a text. 

Definition 3. (Knowledge Triple) A knowledge triple 𝑡 =< 𝑐𝑖 , 𝑟, 𝑐𝑗 > , where  

𝑐𝑖 , 𝑐𝑗 ∈ 𝐶 and 𝑐𝑖 ≠ 𝑐𝑗, is a basic unit of knowledge that constitutes a conceptual 

graph. Note 𝑡 ∈ 𝑻 where T is the entire set of triples in a KB. 

For example, a sentence “A robot appears in a play” can be represented as: 

<robot, appear, play>. While we use word forms in expressing a concept and a 

relation, they are encoded with unique identifiers in the QA system. It is one of the 

main differences between the proposed approach and the conventional information 

retrieval (IR) based QA approach or an open-domain relation extraction (Open-IE) 

approach, where strings composed of words or phrases appearing in the source text 

are used for a concept or relation, and answers are obtained based on string 

matching rather than semantic matching.  

Using triples as building blocks, a conceptual graph can be constructed by 

merging the common concept nodes of triples. Clauses in natural language text are 

basic units for constructing conceptual graphs.  

Definition 4. (Bare Conceptual Graph) A set of triples constitute a bare 

conceptual graph (BCG) 𝑔̂ = {𝑡1, 𝑡2, … , }  which is a connected graph 

representing the meaning of a natural language clause. A collection of bare 

conceptual graphs is denoted as 𝐺̂ 



 

That is, a concept node is reachable from any other concept node in a BCG. This 

constraint is important for the graph matching algorithm.  

In a problem solving domain, context plays a critical role as it constrains the 

problem solving without intervening in it explicitly (Brézillon et al., 1999). 

Likewise, context is important in answering questions. First of all, a question may 

not be answered correctly without a specific reference to a context in which an 

answer would satisfy the conditions. Let us consider the following: 

 Question: What is the type of our galaxy (Milky Way) based on Hubble’s 

categorization?  

Answer: Barred spiral galaxy  

The question includes two contexts: ‘our galaxy’ and ‘Hubble’s categorization’. 

Without referring to the specific contexts, the system may find a wrong answer like 

‘spiral galaxy’ (from the ‘Andromeda galaxy’ context) or ‘black hole based galaxy’ 

(from other categorization context).  

Second, when BCGs are combined to represent the meaning of a connected text 

(e.g. in a document) or remote texts (e.g. two remote sentences referring to an event), 

it would not make sense to merge two concepts without considering their contexts. 

For instance, a triple <robot, appear, play> extracted from a sentence “The word 

‘robot’ firstly appeared in a play.” should not be combined with a triple extracted 

from an entirely different context like <Hubo, is_a, robot>.  

To address this issue, we associate a context for each BCG.  

Definition 5 (Context) A context 𝑥 ∈ 𝑋, where X is a set of possible contexts in a 

QA system, is associated with BCGs or a higher level knowledge. A function 

ℎ: 𝑋 →  𝐺̂  identifies a collection of BCGs that are associated with a single 

context. Note that ℎ−1 returns one or more contexts for a bare CG. A set of B 

CGs for a context i is denoted as  𝐺̂𝑖. 

A QA system must have its own definition of possible contexts or X, which can 

cover various types such as time, space, group of people, dialogue, etc. In our 

current research, we simply define X to be different Wikipedia articles. That is, we 

make an assumption that the concepts with the same surface form appearing in a 

single Wikipedia article refer to the same entity or abstract notion because they are 

in the same context.  

Two BCGs in the same context can be merged when there is common concept 

node on each to form a larger graph. This is based on the assumption that two 

concepts of the surface form in the same context refer to the same concept. Although 

there can be an exception like the same surface forms even in the same sentence that 

may refer to two different entities, differentiation of such concepts is deferred to 

future research. On the other hand, the same surface forms in different contexts (i.e. 

different articles in the current work) are treated as different concepts with unique 

IDs. The only exception is that the concepts corresponding to a named entity 

appearing in different articles are treated as the same concept and hence merged at 

the time of graph matching. Now we can define a CG with its proper context. 



 

Definition 6 (Context-Anchored Conceptual Graph) A collection of context-

anchored CG (or XCG) 𝐺𝑋 = {(𝐺̂, 𝑥)} is defined to be a set of BCG collections 

associated with their contexts. An XCG instance 𝑔𝑥𝑖
= (𝐶, 𝑅, 𝑋) is an ordered 

triples of concepts, relations, and contexts. 

To illustrate all the definitions, we show an example: 

Input sentence: “The word ‘robot’ firstly written in a play” (from wikipedia 

document titled ‘robot’) 

XCG: {<robot, is_a, word> : Wikipedia:robot ), (<robot, appear, play> : 

Wikipedia:robot )} 

Note that relations are a member of predefined set of relations. For a notational 

convenience, the above XCG instance is expressed as 

XCG: Wikipedia:robot :: {<robot, is_a, word>, <robot, appear, play>} 

Fig. 1 shows a visualized representation of two XCG instances constructed from 

two different contexts (source documents). Rectangles and ovals represent concepts 

and relations, respectively. The rounded boxes represent context labels (in this case, 

source documents’ titles) that are referred to by the BCGs. 

 

 

 

 

Figure 1. A visualized representation of two XCG instances 

Note that BCGs in the same context may be merged with a common concept node to 

form a larger graph. This context-sensitive merging process simulates the usual 

inference with the triples in a conventional KB. Since this type of informal inference 

is conducted at the time of CG construction only within the same context, the way 

contexts are defined in a QA system determines the flexibility of its ‘inference’ and 

hence its characteristics in answering a question. 

3.2. Converting Text to CG 

This process involves many NLP tasks, which are challenging by themselves. In 

this paper, we only describe the gist of the key steps with key issues, and overall 

approaches taken in the current implementation.  

Concept Extraction. Since concepts are the most essential building blocks of 

CGs and the core elements in question answering, concept extraction is the first task 

that determines the quality of a CG. From an NLP point view, we consider concepts 

come from nouns or noun phrases to cover abstract notions and entities as well as 

named entities. So the concept extraction task boils down to that of identifying a text 

boundary corresponding to a concept in such a way that its type can be determined 

or it can be mapped to a type hierarchy (aka ontology).  

Wikipedia:robot 

Wikipedia 

:play(theatre) 

word IS_A robot MEAN machinery 

robot APPEAR play 



 

The main thrust of the current implementation is that we primarily rely on the 

headwords in multiple dictionaries and the titles of Wikipedia articles (referred to as 

reference sources) in defining the space of concepts and determining whether any 

words or phrases should be treated as concepts. We also apply some heuristic rules 

for identifying the concepts not found in the reference sources, such as newly coined 

words, unknown named entities, or phrasal entities. We deliberately avoid well-

known technique like named entity recognition (e.g. [Cohen and Sarawagi, 2004]) 

because they are computationally expensive and labor-intensive for building training 

data. Based on a preliminary experiment with a small test set containing 200 concept 

instances, we obtained 88.5% accuracy in the concept detection task. 

After a concept is extracted, we determine its type especially when it is 

ambiguous (e.g. human name vs. film’s title with the same name). The type 

classifier is trained by word2vec (Mikolov et al., 2013) features, which is a widely 

used deep-learning method based on text representation features. The training 

instances are sentences from the Korean Wikipedia corpus, selected by a string 

matching method with each category’s concept. The concept categories which grant 

unique identifier to each type come from both Korean standard dictionaries and 

Wikidata. 

Relation Extraction. Once all the concepts have been extracted from a text, all 

the relations between pairs of the concepts need to be found. Given a catalogue of 

pre-defined relations adopted from Wikidata (e.g. ‘spouse’), the relation extraction 

task is treated as a classification problem because it is a matter of selecting one or 

more of the available relations based on the target sentence. Wikidata has thousands 

of unique relations defined by humans, and most of the triple instances are 

automatically generated from the Wikipedia corpus including the semi-structured 

‘info-box’ information. By counting the concept pairs with a particular relation in 

the dataset, we selected 47 most frequent relations that would be useful in QA. 

Formally the relation extraction function  is defined as follows: 

: 𝑪 × 𝑪 × 𝑿 → 𝑹 

where X is broadly defined to be a context as introduced earlier but is limited to a 

narrower scope in the context of the two concepts extracted from the text. As a 

result of the mapping function, we end up generating triples as building blocks for a 

CG. 

While this function can be defined in a number of different ways, our current 

approach is to integrate both pattern-based and supervised learning based classifiers. 

The former has an advantage of high precision but a weakness in recall. The pattern-

based classifier determines a relation based on the POS patterns in the context 

between two concepts in the sentence. To handle the remaining cases, we train a 

classifier based on labeled sentences. We employ a distant supervision approach in 

(Mintz et al., 2009). The precision of extracted relation scored 79.0% in the 

experimental set consisting of 300 randomly selected concept pairs. 



 

4. CGQA Process 

Question answering is defined to be a function 𝑚: 𝐺𝑄 → 𝐺𝐾𝐵  that maps a 

question CG (also referred to as a query graph) to a KB CG so that a relevant 

subgraph (typically a concept node) is returned. Since a question analysis often leads 

to an arbitrarily complex result including a semantic answer type (SAT), a lexical 

answer type, and a question focus for a natural language query, a QA process can 

take advantage of them by developing an ad-hoc answer selection algorithm. We 

define a core of CGQA as the graph matching kernel that returns a set of subgraphs 

that are likely to contain the answer.  

Definition 7 (CGQA System Kernel) A CG-based QA system includes a kernel 

that receives a question graph 𝑔𝑄  which is in the form of 𝐺𝑋  with or without 

explicit value for X and searches a KB 𝐺𝐾𝐵 =∪ G𝑋𝑗
 covering all the contexts.  

The entire CGQA for a natural language query consists of four steps: query CG 

construction, context search, graph matching, and answer ranking.  

The query graph construction process determines the question type such as ‘fill-

in-the-blank’ and ‘association inference’ and then converts question sentences into a 

query graph. A query graph may or may not include a wildcard (*) concept node, 

depending on the question type. While a ‘fill-in-the-blank’ question asks for a 

concept that is missing in a query graph, expressed with a wildcard, an ‘association 

inference’ question asks for a concept that can be inferred from a set of concepts 

mentioned in the query.  

Given the sheer size of the KB, it would be impractical to match a query graph 

against the entire document CG in the KB. The context search process alleviates the 

problem by limiting the search only to those graphs in a specific context so that we 

can significantly reduce the search space for graph matching. Since the current 

implementation defines context with the boundaries of Wikipedia articles, the result 

of the context search process is a set of Wikipedia articles. Note that the search 

function can be implemented with more refined contexts such as time interval or 

location boundaries of any entity mentioned in the question.  

Graph matching generates candidate subgraphs by invoking the core process in 

Definition 7. Details of the current algorithm are explained in Section 4.3. Finally, 

answer ranking process aggregates the graph matching result and ranks answer 

candidates extracted from the matched document graphs. 

4.1. Query Graph Construction 

Given a natural language question, the first step is to determine its type. While 

several types exist for the quiz contest, we pay attention to two: ‘fill-in-the-blank’ 

and ‘association inference’ types. The former is named as such because the question 

contains an explanation about something with a wildcard (‘*’) that should be filled 

in to make the question sentences correct. During the graph matching process, 



 

wildcard concepts should be matched with any concepts that are returned as potent 

answer candidates. The missing concept node is marked with a wildcard, and the 

QA process needs to find a concept to replace it. In this work, a query graph for the 

‘fill-in-the-blank’ type has only one wildcard node. The latter type asks for a 

concept that should be inferred by a list of explanations in the question. For CGQA, 

we need to find a subgraph or node that is semantically related to the list of 

explanations. The question type is automatically determined by a pre-built classifier 

built by Heo et al., (2015). Fig. 3 shows an example for the two types of questions 

and their CG versions.  

1) ‘Fill-in-the-blank’ Question Type: “This word firstly appeared in a play. 

The modern meaning of it is ‘a machinery similar to human’. What is this?” 

[Answer: ‘robot’] 

 

 

 

2) ‘Association Inference’ Question Type: “Apollon, Inka empire, and 

Louis XIV… What is related to all the above?” [Answer: ‘sun’] 

 

 

Figure 3. An example of query graphs for two types of questions 

Figure 4. Overall process of context search for graph matching 

4.2. Context Search 

The answer for a query CG is likely to be in the same contexts as those of the 

concepts of the query. To find top-k context-anchored CGs (or document graphs in 

this case), we currently employ a simple TF-IDF term weighting scheme heavily 

used in information retrieval. 
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𝑡𝑓(𝑐, 𝑑) = 𝑙𝑜𝑔(𝑑𝑒𝑔(𝑐, 𝑑) + 1) 

𝑖𝑑𝑓(𝑐, 𝐷) = 𝑙𝑜𝑔(|𝐷| / |{𝑑′ ∈ 𝐷: 𝑐 ∈ 𝑑′}|) 

where deg(c, d) is the number of relations directly linked to the concept c in the 

context-anchored graph d. The score for the context graph associated with the query 

CG (qCG) is the sum of the TF-IDF scores of all concepts in the query graph. Since 

calculating all the scores of the context graphs requires very high computational cost, 

we create two indices to reduce the online calculation cost: 1) the graph-theoretic 

degree of each concept node in a CG, and 2) the number of context graphs 

containing each concept. As a result of context search, we can retrieve top-k 

document graphs to be matched with the query graph. The overall process is 

described in Fig. 4. 

4.3. Graph Matching 

We apply a graph matching algorithm to find appropriate answer candidates in 

document graphs. The graph matching approach finds or extracts subgraphs which 

are likely to contain answer candidates for a query graph from document graphs. 

The detailed policies for searching answer candidates in result subgraphs are 

different for the question types. Definition 8 describes the task of graph matching. 

Definition 8 (Graph Matching) The inputs are a query graph 𝑯𝑞 , a set of document 

graphs 𝑮 = {𝑔1, …, 𝑔𝑡 } where 𝑔𝑡  is a document graph, and a top-k parameter 𝑘. 

According to the question types, the algorithm performs one of the following 

tasks: 1) partial subgraph matching for ‘fill-in-the-blank’ questions, and 2) 

center-piece subgraph extraction for ‘association inference’ questions. The 

outputs are top-k matched subgraphs 𝑯𝑡  from each document graph in 𝑮. The 

algorithm is applied to multiple document graphs in parallel as shown in Fig. 4. 

     Partial Subgraph Matching.  The answer node of a ‘fill-in-the-blank’ query 

graph is likely to be close to subgraphs in a document graph when the subgraphs 

have the similar structure to the query graph. Our approach first matches a query 

graph except for a wildcard node using a subgraph matching algorithm based on G-

Ray (Tong et al., 2007); then we match the wildcard based on the best matched 

subgraph 𝑯𝑡 . The nodes matched to the wildcard are considered as answer 

candidates. We design a wildcard score function in order to match a document node 

to the wildcard. Let 𝑺(𝑤) and 𝑻(𝑤) denote in- and out-neighbors of the wildcard 𝑤 

in 𝑯𝑞 , respectively. Suppose 𝑚: 𝑞 → 𝑣 is a matching function from a query node 𝑞 

to a document node 𝑣. The wildcard score function of a document node 𝑣 w.r.t. the 

wildcard 𝑤 is computed as follows: 

ℎ𝑤(𝑣) = ∏ 𝑟𝑚(𝑠)→𝑣

𝑠∈𝑺(𝒘)

× ∏ 𝑟𝑣→𝑚(𝑡)

𝑡∈𝑻(𝒘)

 

where 𝑟𝑢→𝑣 is the node relevance such as Random Walk with Restart (Jung et al., 

2016) from node 𝑢 to node 𝑣. This indicates that node 𝑣’s wildcard score will be 

high if node 𝑣 is close to other nodes matched to neighbors of 𝑤. We choose k 

document nodes {𝑎1, 𝑎2, … , 𝑎𝑘} for matching the wildcard 𝑤 in the order of wildcard 



 

scores. Let 𝑷(𝑤, 𝑎𝑖) = {𝑝𝑎𝑡ℎ(𝑎𝑖 , 𝑚(𝑞))|𝑞 ∈ 𝑺(𝑤) ∪ 𝑻(𝑤)}  be the set of paths 

between 𝑎𝑖  and other document nodes matched to neighbors of the wildcard 𝑤 

where the paths are discovered by a path finding algorithm suggested in G-Ray. 

Then, we compute the union of 𝑯𝑡 and 𝑷(𝑤, 𝑎𝑖) to form 𝑖-th matched subgraph.  

Subgraph Score for Partial Subgraph Matching.  We design a subgraph score 

to compare subgraphs obtained from multiple document graphs (Fig. 4). Suppose 

𝑯𝑞(𝑬) is the set of edges in 𝑯𝑞 , and 𝑯𝑡 is a result subgraph. Consider an edge in 

𝑯𝑞(𝑬) is partially matched to a path p in a document graph. Let P be the set of paths 

in 𝑯𝑡 for all edges in 𝑯𝑞(𝑬). The subgraph score 𝜎(𝑯𝑡) is defined as follows: 

𝜎(𝑯𝑡) =
∑ |𝑝|−1

𝑝∈𝑷

|𝑯𝑞(𝑬)|
 

where |𝑝|−1 is the inverse of the length of the path p (i.e., a long path is penalized), 

and | 𝑯𝑞(𝑬) | is the number of edges in 𝑯𝑞 . The score indicates the structure 

similarity between 𝑯𝑞  and 𝑯𝑡. Fig. 5.  illustrates the examples of subgraph scores.  

   

a

b
d

c

a'

b'
d'

c'

(a) Query graph (b) Result subgraph 1 (d) Result subgraph 3

1

1
1

a'

b'
d'

1

0
1

Not

matched

a'

b'
d'

1

0.5

1
c'

(c) Result subgraph 2

Partially

matched

 
 

𝜎(𝑯𝑡) =
1 + 1 + 1

3
= 1 𝜎(𝑯𝑡) =

1 + 1 + 0.5

3
= 0.83 𝜎(𝑯𝑡) =

1 + 1

3
= 0.67 

Figure 5. Examples of subgraph scores when a query concept 𝐚 is matched to a 

document 𝐧𝐨𝐝𝐞 𝐚′. The subgraph score in (b) is 1 since the structure of the 

result subgraph is the same as that of the query graph. In (c), the length-2 path 

𝐝′ − 𝚫 − 𝐜′ is partially matched to the edge 𝐝 − 𝐜 in the query graph; the score 

is penalized by the long path. Also, the score is penalized by non-matched nodes 

as in (d). 

Center-piece Subgraph Extraction. Our goal is to find concepts that are most 

relevant to query concepts for an ‘association inference’ question.  For the purpose, 

we extract subgraphs containing nodes relevant to query nodes using a subgraph 

extraction algorithm based on CePS (Tong et al., 2006). CePS first matches query 

nodes, and extracts subgraphs based on nodes relevant to the query concepts. To 

measure the relevance of node 𝑣  for query nodes, a center score is defined as 

follows: 

ℎ𝑸(𝑣) = ∏ 𝑟𝑚(𝑞)→𝑣

𝑞∈𝑸

 

where 𝑸 is the set of query nodes, 𝑚(𝑞) is the node matched to query node 𝑞, and 

𝑟𝑢→𝑣  is the node relevance score from node 𝑢 to node 𝑣. We choose k document 

nodes {𝑎1, 𝑎2, … , 𝑎𝑘}  as answer candidates in the order of center scores. Let 

𝑷(𝑸, 𝑎𝑖) = {𝑝𝑎𝑡ℎ(𝑎𝑖 , 𝑚(𝑞))|𝑞 ∈ 𝑸} be the set of paths between node 𝑎𝑖 and other 



 

document nodes matched to the query nodes where the paths are obtained by a path 

finding algorithm in CePS. Then, we build 𝑖-th matched center-piece subgraph by 

computing the union of the paths in 𝑷(𝑸, 𝑎𝑖).  

Each answer candidate extracted from each document graph contains a local 

score such as a center score. To increase the performance of overall QA process, the 

local score has to be integrated into a global score. However, in our current 

implementation, we take an approach of choosing top-𝑘 answer candidates over all 

matched subgraphs in the order of local scores for simplicity. 

5. Experiment 

5.1. Task and Dataset 

Our CGQA system was applied to a real-world QA task as a way of proving its 

feasibility and identifying key research issues for further improvements. In 

particular, our aim is to test the performance of the current implementation of the 

graph matching and answer ranking algorithms for the questions of the two types so 

that we can identify the areas for further refinement and extension. 

The QA task came from a quiz contest on Korean broadcasting, called Jang-Hak 

Quiz. The task in our experiment is to answer a subset of the questions by finding a 

ranked list of answer candidates from document CGs constructed from the 

Wikipedia corpus. As the evaluation measure, we employ success@n which 

represents the ratio of questions which succeed in finding correct answers within top 

n answer candidates. The comparison with state-of-art QA systems is not conducted 

because current language we focus is Korean. 

We have collected the questions and answers broadcasted from 2009 to 2014. 

From 2,355 questions in total, we selected 11.8% that are classified as ‘hard’ 

questions belonging to the ‘association inference’ type. We also tested our system 

for questions belonging to the ‘fill-in-the-blank’ type, which constitutes 60.6% of 

the entire set. Other minor question types like ‘comparison’ and ‘calculation’ are not 

used for our experiment. 

To construct a CG-based KB, we used the Korean Wikipedia corpus containing 

over 500,000 documents. After removing redirection, reference and category 

documents, we used 301,070 documents for actual experiment. A total of 1,618,458 

concepts were extracted and the number of distinct IDs was 350,902. The number of 

triples formed after relation extraction was 20,676,272. We adopted 47 relations 

from Wikidata based on frequency. 

5.2. Results 

5.2.1. ‘Fill-in-the-blank’ questions 

Out of 766 questions belonging to this type, we selected 170 for which the query 

graphs were correctly constructed and context search was conducted successfully 



 

with a reasonable number of candidate graphs. By isolating the errors incurred in the 

process of CG generation and context search, the experimental result would show 

the efficacy of the matching algorithms. The correctness of each query graph was 

determined by three judges.  

Fig. 6 shows the result where the X axis represents the number of returned 

answer candidates (n) and the Y axis represents the ratio of correctly answered 

questions to the answer candidates, using success@n criteria. For example, for 40% 

of the questions, the correct answer was found within five answer candidates. The 

correct answers were found in over 96% of the questions within the top 45 answer 

candidates. It means we can find the correct answer with a very high probability 

when we search only 45 answer candidates. Note that the result is based on the 

graph matching algorithm only, and the performance can be further improved if we 

use other features available in the question CG such as semantic answer type (SAT). 

Figure 6. Success@n of ‘fill-in-the-blank’ type questions 

5.2.2. ‘Association inference’ question type 

 This question type is atypical compared to usaual factoid questions because the 

clues included in a question are not likely to be found together with the answer in 

triples. It turns out that both IRQA and KBQA experience diffuculty in answering 

questions of this type. Out of 128 questions of this type in the dataset, we selected 

30 questions for which their query graphs were constructed correctly and context 

search was also done successfully like the other query type case mentioned above. 

Figure 7.  Success@n of ‘association inference’ type questions 

Fig. 7 shows the result. As expected, the scores for this type are relatievly lower 

than the other question on average but not much. This result is very encouraging 

0.40 
0.57 0.60 0.67 0.73 0.77 0.77 0.80 0.80 

1.00 

0.00
0.20
0.40
0.60
0.80
1.00

5 10 15 20 25 30 35 40 45 >=50

success@n - 'association inference' type 

0.40
0.56 0.65 0.72 0.78 0.81 0.87 0.91 0.96 1.00

0.00
0.20
0.40
0.60
0.80
1.00

5 10 15 20 25 30 35 40 45 >=

50

success@n - 'fill-in-the-blank' type



 

because this question type is considered very difficult to answer by traditional QA 

systems. Although finding the correct answer from the candidates may be more 

difficult for this type of questions, the use of semantics avaiable in query graphs can 

also be a big plus in finding the correct answers. 

5.2.3 Failure Analysis  

We show a failure case where the correct answer was ranked very low among the 

answer candidates, so that we can identify the limitations of the current 

implementation. The question we analyzed was of ‘association inference’ type. For 

the question “A method or a tool to imply events that would occur in the future in a 

narrative of a novel or a play”, the answer is ‘foreshadow’. The titles of the top five 

document graphs retrieved by the context search were: Dramatization, Humanities, 

New_Crobuzon (nation in a novel), SF (genre), and Richard_Wagner (composer). 

The first four are considered appropriate but the last one is completely irrelevant. 

When the candidate graphs were matched against the query graph, the correct 

answer ‘foreshadow’ was ranked at 84. The highly ranked incorrect answers like 

‘train’, ‘setup’, ‘sex’, and ‘death’ can be seen as instances of foreshadow in actual 

artwork but not appropriate as a general answer. 

5.2.4. Discussion 

One of the key contributions of this work is the explicit use of context for QA. 

The context search is valuable not only in reducing the search space but also 

enhancing the effectiveness of CGQA. The performance in the experiment would 

have been much lower without the context search as shown in a preliminary 

experiment where the performance without context search was much worse. 

 Existing QA approaches based on a context-insensitive KB rarely have 

knowledge structure to handle context, making it difficult to deal with ‘hard’ 

questions that refer to more than one context. Since the clue concepts in the 

questions are far apart from the correct answer, they cannot contribute to limiting 

the search in IRQA and making inference in KBQA. Fig. 8 shows a part of 

document graphs from three contexts to answer a question (from Fig. 3-1)). 

Although the clue concepts are dispersed widely, the correct answer is found 

successfully. For example, the concepts ‘Human’, ‘Play’, and ‘Writer’ found from 

several different contexts (‘Wikipidia:Atheism’ and ‘Wikipidia:Humanities’) 

contributed to find the correct answer ‘Robot’ by CGQA. 

In our graph matching algorithm, the subgraph scores indicate how much a result 

subgraph is topologically similar to the query graph without considering the 

importance of each concept in the query graph. The proposed method would result 

in poor performance when the resulting subgraphs cover only a small portion of the 

concepts in the query graph and when they are similar to each other. Therefore we 

need to devise an enhanced scoring function by considering various semantics like 

concept-concept similarity.  



 

 

 

 

 

 

 

Figure 8.  A subset of document graphs from three contexts to answer a 

question 

6. Conclusion 

We proposed a conceptual graph based question answering (CGQA) framework 

that enables informal inference and context-driven knowledge representation. This 

approach has been implemented with NLP techniques for generating conceptual 

graphs from text and efficient graph matching algorithms as an inference mechanism, 

which is geared toward answering not only conventional but also 'hard' questions. 

We described how the new QA method applies to questions in a quiz contest 

dataset and the feasibility of CGQA framework that helps answering ‘hard’ 

questions that require processing of contexts. We reassured that the availability of 

context-based knowledge structure seems crucial for the given QA task. 

There are a number of avenues to explore for future research. Using the 

framework, we can define a variety of context types so that the graph matching can 

be limited to more coherent candidate graphs, thereby improving efficiency and 

effectiveness. Another important area is to consider approximate matching in 

computing concept-concept or relation-relation similarity so that we can relax the 

rigidity of graph matching for higher recall. On the other hand, the structural 

constraints would compensate for a potential loss of precision. 
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